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ABSTRACT. In this paper, we study the convergence and almost sure (S, T)−stability of Jungck-Noor type, Jungck-SP type,

Jungck-Ishikawa type and Jungck-Mann type random iterative algorithms for some kind of a general contractive type random

operators (2.14) in a separable Banach spaces. The Bochner integrability of random fixed point of this kind of random opera-

tors, the convergence and almost sure (S, T)−stability for these kind of random iterative algorithms under condition (18) are

obtained. Our results are stochastic generalizations of Zhang et al. [1], Okeke and Eke [2] and many others in deterministic

verse.

1. Introduction

I t is known that random fixed point theorems are stochastic generalization of classical fixed point theorems

which are called deterministic results. These theorems was initiated in 1950s by Prague school of probabilistic.

Many authors are impressed by random fixed point theory especially, when Bharucha-Reid [3, 4] presented his

papers which lead to the development of these theorems. Interests in random fixed point theory stems in its vast

applicability in stochastic functional analysis and various probabilistic models.
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There are many new questions of measurability, probabilistic and statistical aspects of random solution were

answered by the introduction of randomness. After papers of Bharucha-Reid, Špaček [5] and Hanš [6] established

stochastic analogue of the Banach fixed point theorem in a separable metric space. Itoh [7] in 1979, generalized

and extended Špaček and Hanš’s theorem to a multivalued contraction random operators. Papageorgiou [8]

proved several random fixed point theorems for measurable closed and nonclosed valued multifunctions satisfy-

ing general continuity conditions. His results improved the results of Engl [9], Itoh [7] and Reich [10]. In 1999,

Shahzad and Latif [11] introduced a general random fixed point theorem for continuous random operators. As

applications, they stated and proved a number of random fixed points theorems for various classes of 1-set and

1-ball contractive random operators. Chang et al. [12], Beg and Abbas [13] proved some convergence theorems

of random Ishikawa scheme and random Mann iterative scheme for strongly pseudo-contractive operators and

contraction operators, respectively, in separable reflexive Banach spaces.

Recently, Zhang et al. [1] studied the almost sure T− stability and convergence of Ishikawa-type and Mann-

type random algorithms for certain φ−weakly contractive type random operators in a separable Banach space.

They established the Bochner integrability of random fixed point for this kind of random operators and the almost

sure T−stability and convergence for these two kinds of random iterative algorithms under suitable conditions.

Okeke and Abbas [14], studied convergence and almost sure T−stability for a random iterative sequence gen-

erated by a generalized random operator. Okeke and Kim [15], introduced convergence and summable almost

T−stability of the random Picard-Mann hybrid iterative process. Okeke and Eke [2], extended the results of Zhang

by introducing a Noor-type random iterative scheme and studying the same results. These results are stochastic

generalization of the deterministic fixed point theorems of Berinde [16, 17] and Rhoades [18, 19].

Meshra [30] studied some problems on approximations of functions in Banach spaces. Meshra et al. [28, 29,

31] proved fixed point theorems for generalized contractive and S-contractive mappings in partial metric spaces,

in general they introduced Trigonometric approximation of signals (Functions) in Lp(p ≥ 1)-norm. As application

Deepmala [32] introduced study on fixed point theorems for nonlinear contractions while Rashwan and Hammad

[33] studied random fixed point theorems with an application to a random nonlinear integral equation.

In 2005, Singh et al. [20] proved the stability of Jungck type iterative procedure as:

Definition 1.1. (Jungck-Mann iteration process) Let (X, ‖.‖) be a normed linear space and Y be arbitrary set S, T :

Y → X such that T(Y) ⊆ S(Y), then for x◦ ∈ Y, the sequence {Sxn}∞
n=0 defined by

Sxn+1 = (1− αn)Sxn + αnTxn, n ≥ 0, (1.1)

where {αn}∞
n=0 is a sequence of real numbers in [0, 1].

Remark 1.1. If we put S = I (where I is the identity mapping), Y = X, in (1.1), we obtain Mann iteration process

[21].

In 2008, Great work published by Olatinwo and Imoru [22] which shows that convergence results of Jungck-

Ishikawa iterations as:

Definition 1.2. (Jungck-Ishikawa iteration process) Let (X, ‖.‖) be a Banach space and Y be arbitrary set. Let S, T :
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Y → X be a nonself mappings such that T(Y) ⊆ S(Y), S(Y) is a complete subspace of X and S is injective, then

for x◦ ∈ Y, define the sequence {Sxn}∞
n=0 iteratively by Sxn+1 = (1− αn)Sxn + αnTyn

Syn = (1− βn)Sxn + βnTxn,
, (1.2)

where {αn}∞
n=0 and {βn}∞

n=0 are real sequences in [0, 1].

Remark 1.2.

(i)If we take S = I and Y = X in (1.2), we have the Ishikawa iteration process [23].

(ii) Taking βn = 0 in (1.2), we get Jungck-Mann iterative scheme (1.1).

The convergence results using Jungck-Noor three step iteration scheme were introduced by Olatinwo [24] as:

Definition 1.3. (Jungck-Noor iteration process) Let (X, ‖.‖) be a Banach space and Y be arbitrary set. Let S, T : Y → X

be a nonself mappings such that T(Y) ⊆ S(Y), S(Y) is a complete subspace of X and S is injective, then for x◦ ∈ Y,

define the sequence {Sxn}∞
n=0 iteratively by

Sxn+1 = (1− αn)Sxn + αnTzn

Szn = (1− βn)Sxn + βnTyn

Syn = (1− γn)Sxn + γnTxn,

, (1.3)

where {αn}∞
n=0, {βn}∞

n=0 and {γn}∞
n=0 are sequences in [0, 1].

Chugh and Kumar [25] introduced strong convergence and stability results for Jungck-SP iterative scheme as:

Definition 1.4. (Jungck-SP iteration process) Let (X, ‖.‖) be a Banach space and Y be arbitrary set. Let S, T : Y → X

be a nonself mappings such that T(Y) ⊆ S(Y), S(Y) is a complete subspace of X and S is injective, then for x◦ ∈ Y,

define the sequence {Sxn}∞
n=0 iteratively by

Sxn+1 = (1− αn)Syn + αnTyn

Syn = (1− βn)Szn + βnTzn

Szn = (1− γn)Sxn + γnTxn,

, (1.4)

where {αn}∞
n=0, {βn}∞

n=0 and {γn}∞
n=0 are real sequences in [0, 1].

Remark 1.3.

(i)If we take S = I and Y = X in (1.3), we obtain Noor-three iteration process [26].

(ii) The iterations process (1.1) and (1.2) are a special cases of the iteration (1.3).

(iii) Putting βn = γn = 0 in (1.4), we get the iteration (1.1).

2. Preliminaries

In order to prove our main results, we need to recall the following concepts and results. Let (X, Σ) be a

separable Banach space where Σ is σ−algebra of Borel subset of X and let (Ω, Σ, µ) denote a complete probability

measure space with measure µ and Σ be a σ−algebra subset of Ω, C is a nonempty subset of X.
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Definition 2.1. ([27]) A random variable x(ω) is Bochner integrable if ‖x(ω)‖ ∈ L1(Ω, Σ, µ) meaning that∫
Ω

‖x(ω)‖ dµ(ω) < ∞. (2.1)

Proposition 2.1. ([1]) A random variable x(ω) is Bochner integrable iff the sequence of random variables {xn(ω)}∞
n=1

converges strongly to x(ω) almost surely such that

lim
n→∞

∫
Ω

‖xn(ω)− x(ω)‖ dµ(ω) = 0. (2.2)

Definition 2.2. ([1]) Assume that (Ω, Σ, µ) be a complete probability measure space and C be a nonempty subset

of a separable Banach space X. Let T : Ω× C → C be a random operator and x∗(ω) ∈ C is called random fixed

point of T (i.e. for all ω ∈ Ω, T(ω, x∗(ω)) = x∗(ω)). For any given random variable x◦(ω) ∈ C, define an iterative

scheme {xn(ω)}∞
n=0 ⊂ C by

xn+1(ω) = f (T, xn(ω)), n = 0, 1, 2, ... (2.3)

where f is some function measurable in the second variable. Let T has a random fixed point (say x∗(ω)) which

is Bochner integrable with respect to {xn(ω)}∞
n=0. Let {yn(ω)}∞

n=0 ⊂ C be an arbitrary sequence of a random

variable. Assume that

εn(ω) = ‖yn+1(ω)− f (T, yn(ω))‖ , (2.4)

and consider ‖εn(ω)‖ ∈ L1(Ω, Σ, µ), n = 0, 1, 2, .., then the iterative scheme (2.3) is stable with respect to T almost

surely (T−stable almost surely) iff

lim
n→∞

∫
Ω

‖εn(ω)‖ dµ(ω) = 0, (2.5)

implies that x∗(ω) is Bochner integrable with respect to {yn(ω)}∞
n=0.

Definition 2.3. ([1]) Let (Ω, Σ, µ) be a complete probability measure space and C is a nonempty subset of X. A

random operator T : Ω× C → C is the φ-weakly contractive type if there exists a continuous and nondecreasing

function φ : R+ → R+ with φ(0) = 0 and φ(t) > 0 for every t ∈ (0, ∞) such that ∀x, y ∈ C, ω ∈ Ω,∫
Ω

‖T(ω, x)− T(ω, y)‖ dµ(ω) ≤
∫
Ω

‖x− y‖ dµ(ω)− φ(
∫
Ω

‖x− y‖ dµ(ω)). (2.6)

The main aim of this paper is to introduce the following four random iterations as Jungck-Noor type, Jungck-

SP type, Jungck-Ishikawa type and Jungck-Mann type, also we prove that the random fixed point of this kind of

random operators is Bochner integrable in addition, we prove the convergence and some stability results of these

random iterative algorithms under contractive condition (2.14) in a separable Banach space (X, ‖.‖).

Let (Ω, Σ, µ) be a complete probability measure space and C is a nonempty subset of a separable Banach space

X and let S, T : Ω × C → C be two random operator defined on C, such that S is injective. Let x◦(ω) ∈ C be

arbitrary measurable mapping for ω ∈ Ω, n = 0, 1, .. with T(ω, Y) ⊆ S(ω, Y), S is injective, then the sequence
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{S(ω, xn(ω))}∞
n=0 iteratively defined by

S(ω, xn+1(ω)) = (1− αn)S(ω, xn(ω)) + αnT(ω, zn(ω))

S(ω, zn(ω)) = (1− βn)S(ω, xn(ω)) + βnT(ω, yn(ω))

S(ω, yn(ω)) = (1− γn)S(ω, xn(ω)) + γnT(ω, xn(ω))

, (2.7)

where {αn}∞
n=0, {βn}∞

n=0 and {γn}∞
n=0 are real sequences in (0, 1), which it called Jungck-Noor type random

iterative scheme.

Also the sequence {S(ω, xn(ω))}∞
n=0 iteratively defined by

S(ω, xn+1(ω)) = (1− αn)S(ω, yn(ω)) + αnT(ω, yn(ω))

S(ω, yn(ω)) = (1− βn)S(ω, zn(ω)) + βnT(ω, zn(ω))

S(ω, zn(ω)) = (1− γn)S(ω, xn(ω)) + γnT(ω, xn(ω))

, (2.8)

where {αn}∞
n=0, {βn}∞

n=0 and {γn}∞
n=0 are real sequences in (0, 1), which it called Jungck-SP type random iterative

scheme.

If we take γn = 0 for each n ∈N in (2.7), then we have Jungck-Ishikawa type random iterative scheme S(ω, xn+1(ω)) = (1− αn)S(ω, xn(ω)) + αnT(ω, zn(ω))

S(ω, zn(ω)) = (1− βn)S(ω, xn(ω)) + βnT(ω, xn(ω))
, (2.9)

where {αn}∞
n=0 and {βn}∞

n=0 are real sequences in (0, 1).

If we put βn = γn = 0 for each n ∈N in (2.7), then we have Jungck-Mann type random iterative scheme.

S(ω, xn+1(ω)) = (1− αn)S(ω, xn(ω)) + αnT(ω, xn(ω)), (2.10)

where {αn}∞
n=0 is real sequence in (0, 1).

Remark 2.1. If we take Ω is a singleton in (2.7), (2.8), (2.9) and (2.10) then we get the nonrandom cases defined in

(1.3), (1.4), (1.2) and (1.1) respectively.

According to the Definition 2.2 and Definition 2.3, we investigate the following definitions which are used in

the sequel.

Definition 2.4. Let (Ω, Σ, µ) be a complete probability measure space and C be a nonempty subset of a sepa-

rable Banach space X. Let S, T : Ω × C → C such that T(Y) ⊆ S(Y), for every x◦(ω) ∈ C, let the sequence

{S(ω, xn(ω))}∞
n=0 generated by the iteration procedure

S(ω, xn+1(ω)) = f (T, xn(ω)), n ≥ 0, (2.11)

Let x∗(ω) is a common random fixed point of (S, T) (i.e. for all ω ∈ Ω, T(ω, x∗(ω)) = S(ω, x∗(ω)) = x∗(ω))

and Bochner integrable with respect to {xn(ω)}∞
n=0. Let {yn(ω)}∞

n=0 ⊂ C be an arbitrary sequence of a random

variable. Denote

εn(ω) = ‖S(ω, yn+1(ω))− f (T, yn(ω))‖ , (2.12)
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and consider ‖εn(ω)‖ ∈ L1(Ω, Σ, µ), n = 0, 1, 2, .., then the iterative scheme (2.11) is (S, T)−stable almost surely

iff

lim
n→∞

∫
Ω

‖εn(ω)‖ dµ(ω) = 0, (2.13)

implies that x∗(ω) is Bochner integrable with respect to {yn(ω)}∞
n=0.

Definition 2.5. Let (Ω, Σ, µ) be a complete probability measure space and C is a nonempty subset of a separable

Banach space X. Let S, T : Ω× C → C are two random operators with T(ω, X) ⊆ S(ω, X) satisfy the following

contractive condition for all x, y ∈ C and ω ∈ Ω

∫
Ω

‖T(ω, x)− T(ω, y)‖ dµ(ω) ≤ ϕ

∫
Ω

‖S(ω, x)− T(ω, x)‖ dµ(ω)

+ a
∫
Ω

‖S(ω, x)− S(ω, y)‖ dµ(ω), (2.14)

where a ∈ [0, 1) and ϕ : R+ → R+ is a monotone increasing function with ϕ(0) = 0.

Example 2.1. Consider the following nonlinear stochastic integral equation:

x(t; ω) =

∞∫
0

e−t−s

8(1 + |x(s; ω)|) ds ≤ t2

 ∞∫
0

e−t−s

8(1 + |x(s; ω)|) ds

+
1
2

∞∫
0

e−t−s

4(1 + |x(s; ω)|) ds. (2.15)

From (2.15), we have ϕ = t2 for each t ∈ R+ = [0, ∞) and a = 1
2 ∈ [0, 1). Hence the conditions of relation (2.14)

are satisfied.

The following lemma will be needed in this study.

Lemma 2.1. ([24]) If δ be a real number such that 0 ≤ δ < 1 and {εn}∞
n=0 is a sequence of positive numbers such

that limn→∞ εn = 0, then for any sequence of positive numbers {ρn}∞
n=0 satisfying

ρn+1 ≤ δρn + εn n = 0, 1, 2, ..

we have limn→∞ ρn = 0.

3. Some Convergence Results

Theorem 3.1. Let (X, ‖.‖) be a separable Banach space and T, S : Ω× C → C be two random operators satisfying (2.14)

with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T) and

{S(ω, xn(ω))}∞
n=0 be a Jungck-Noor type random iterative sequence defined by (2.7) where {αn}, {βn} and {γn} are real

sequences in (0, 1) such that limn→∞ βn = 0 and
∞
∑

n=1
αnβnγn = ∞. Then the common random fixed point x∗(ω) is

Bochner integrable.

Proof. For each x◦(ω) ∈ Cand T(ω, X) ⊆ S(ω, X), we choose x1(ω) ∈ C such that x1(ω) = T(ω, x◦(ω)) =

S(ω, x1(ω)) and x2(ω) = T(ω, x1(ω)) = S(ω, x2(ω)), by continuing this process we conclude a sequence {xn+1(ω)} ∈

C such that

xn+1(ω) = T(ω, xn(ω)) = S(ω, xn+1(ω)). (3.1)
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To prove our theorem, it is sufficient to prove that from (3.1)

lim
n→∞

∫
Ω

‖xn(ω)− x∗(ω)‖ dµ(ω) = lim
n→∞

∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω) = 0.

Using (2.14) and (2.7), we get∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω)

≤ (1− αn)
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω) + αn

∫
Ω

‖T(ω, zn(ω))− x∗(ω)‖ dµ(ω)

= (1− αn)
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω) + αn

∫
Ω

‖T(ω, x∗(ω))− T(ω, zn(ω))‖ dµ(ω)

≤ (1− αn)
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω) + αn


ϕ

(∫
Ω
‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)

)
+a
∫
Ω
‖S(ω, x∗(ω))− S(ω, zn(ω))‖ dµ(ω)

 ,

since ϕ(0) = 0, then we have

∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω) ≤

 (1− αn)
∫
Ω
‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+aαn
∫
Ω
‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

 . (3.2)

Similarly,∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω) ≤ (1− βn)
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+βn

∫
Ω

‖T(ω, yn(ω))− x∗(ω)‖ dµ(ω)

≤ (1− βn)
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+βn


ϕ

(∫
Ω
‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)

)
+a
∫
Ω
‖S(ω, x∗(ω))− S(ω, yn(ω))‖ dµ(ω)


≤ (1− βn)

∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+aβn

∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω). (3.3)

Applying (3.3) in (3.2) we have

∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω) ≤

 (1− αn(1− a)− aαnβn)
∫
Ω
‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+a2αnβn
∫
Ω
‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω)

 . (3.4)

Also,

∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) ≤

 (1− γn)
∫
Ω
‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+γn
∫
Ω
‖T(ω, xn(ω))− x∗(ω)‖ dµ(ω)

 . (3.5)
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Using (3.5) in (3.4), we obtain that∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω)

≤

 (1− αn(1− a)− aαnβn(1− a)− a2αnβnγn)
∫
Ω
‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+a2αnβnγn
∫
Ω
‖T(ω, xn(ω))− x∗(ω)‖ dµ(ω)

 .

Since a ∈ [0, 1), αn ∈ (0, 1),
∞
∑

n=1
αnβnγn = ∞ and limn→∞ βn = 0 then

0 ≤ 1− αn(1− a) = δ < 1. If we take εn = a2αnβnγn
∫
Ω
‖T(ω, xn(ω))− x∗(ω)‖ dµ(ω) and ρn =

∫
Ω
‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω),

therefore limn→∞ εn = 0, we see that all conditions of Lemma 2.1 are satisfied, hence we get

lim
n→∞

∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω) = 0.

The proof is completed. �

Theorem 3.2. Let (X, ‖.‖) be a separable Banach space and T, S : Ω× C → C be two random operators satisfying (2.14)

with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T) and

{S(ω, xn(ω))}∞
n=0 be a Jungck-SP type random iterative sequence defined by (2.8) where {αn}, {βn} and {γn} are real

sequences in (0, 1) such that
∞
∑

n=1
αn = ∞. Then the common random fixed point x∗(ω) is Bochner integrable.

Proof. By a similar way of proof Theorem 3.1 and using (3.1), (2.14) and (2.8), we can write∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω)

≤ (1− αn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + αn

∫
Ω

‖T(ω, yn(ω))− x∗(ω)‖ dµ(ω)

= (1− αn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + αn

∫
Ω

‖T(ω, x∗(ω))− T(ω, yn(ω))‖ dµ(ω)

≤ (1− αn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + αn


ϕ

(∫
Ω
‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)

)
+a
∫
Ω
‖S(ω, x∗(ω))− S(ω, yn(ω))‖ dµ(ω)

 ,

since ϕ(0) = 0, then we have

∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω) ≤

[1− αn(1− a)]
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω)

 . (3.6)
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Similarly,∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) ≤ (1− βn)
∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

+βn

∫
Ω

‖T(ω, zn(ω))− x∗(ω)‖ dµ(ω)

≤ (1− βn)
∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

+βn


ϕ

(∫
Ω
‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)

)
+a
∫
Ω
‖S(ω, x∗(ω))− S(ω, zn(ω))‖ dµ(ω)


≤ [1− βn(1− a)]

∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω). (3.7)

Applying (3.7) in (3.6) we have

∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω) ≤

[1− αn(1− a)][1− βn(1− a)]
∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

 . (3.8)

Also,

∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω) ≤

 (1− γn)
∫
Ω
‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

+γn
∫
Ω
‖T(ω, xn(ω))− x∗(ω)‖ dµ(ω)


≤

[1− γn(1− a)]
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

 . (3.9)

Using (3.9) in (3.8), we obtain that∫
Ω

‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω)

≤

[1− αn(1− a)][1− βn(1− a)][1− γn(1− a)]
∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)


≤ [1− αn(1− a)]

∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω)

≤
n

∏
k=0

[1− αk(1− a)]
∫
Ω

‖S(ω, x◦(ω))− x∗(ω)‖ dµ(ω)

≤ e
−(1−a)

∞
∑

k=0
αk
∫
Ω

‖S(ω, x◦(ω))− x∗(ω)‖ dµ(ω). (3.10)

Since a ∈ [0, 1), αk ∈ (0, 1),
∞
∑

n=0
αn = ∞ and limn→∞ e

−(1−a)
∞
∑

k=0
αk

= 0, hence it follows from (3.10) that limn→∞
∫
Ω
‖S(ω, xn+1(ω))− x∗(ω)‖ dµ(ω) =

0, but every subsequence of convergence sequence being convergence, then

lim
n→∞

∫
Ω

‖S(ω, xn(ω))− x∗(ω)‖ dµ(ω) = 0.
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The proof is completed. �

By the same method as in Theorem 3.1, we can prove the following theorems.

Theorem 3.3. Let (X, ‖.‖) be a separable Banach space and T, S : Ω× C → C be two random operators satisfying (2.14)

with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T) and

{S(ω, xn(ω))}∞
n=0 be a Jungck-Ishikawa type random iterative sequence defined by (2.9) where {αn} and {βn} are real

sequences in (0, 1) such that limn→∞ βn = 0 and
∞
∑

n=1
αnβn = ∞. Then the common random fixed point x∗(ω) is Bochner

integrable.

Theorem 3.4. Let (X, ‖.‖) be a separable Banach space and T, S : Ω× C → C be two random operators satisfying (2.14)

with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T) and

{S(ω, xn(ω))}∞
n=0 be a Jungck-Mann type random iterative sequence defined by (2.10) where {αn} is real sequence in

(0, 1) such that
∞
∑

n=1
αn = ∞. Then the common random fixed point x∗(ω) is Bochner integrable.

4. Some Stability Results

Theorem 4.1. Let (X, ‖.‖) be a separable Banach space and T, S : Ω× C → C be two random operators satisfying (2.14)

with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T). Let

{S(ω, xn(ω))}∞
n=0 be a Jungck-Noor type random iterative scheme defined by (2.7) converging strongly to x∗(ω) almost

surely, where {αn}, {βn} and {γn} are real sequences in (0, 1) such that limn→∞ βn = 0 and
∞
∑

n=1
αnβnγn = ∞. Then

{S(ω, xn(ω))}∞
n=0 is (S, T)−stable almost surely.

Proof. Consider that {S(ω, yn(ω))}∞
n=0 be any sequence of random variable in C and

‖εn‖ = ‖S(ω, yn+1(ω))− (1− αn)S(ω, yn(ω))− αnT(ω, kn(ω))‖ , (4.1)

where S(ω, kn(ω)) = (1− βn)S(ω, yn(ω))+ βnT(ω, zn(ω)) and S(ω, zn(ω)) = (1−γn)S(ω, yn(ω))−γnT(ω, yn(ω))

and limn→∞
∫
Ω
‖εn‖ dµ(ω) = 0 for every ω ∈ Ω. Now we prove that x∗(ω) is Bochner integrable with respect to

the sequence {S(ω, yn(ω))}∞
n=0. It follows from (4.1) that∫

Ω

‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω)

≤
∫
Ω

‖S(ω, yn+1(ω))− (1− αn)S(ω, yn(ω))− αnT(ω, kn(ω))‖ dµ(ω)

+(1− αn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + αn

∫
Ω

‖T(ω, kn(ω))− x∗(ω)‖ dµ(ω)

=
∫
Ω

‖εn‖ dµ(ω) + (1− αn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω)

+αn

∫
Ω

‖T(ω, x∗(ω))− T(ω, kn(ω))‖ dµ(ω). (4.2)
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By (2.14), we obtain∫
Ω

‖T(ω, x∗(ω))− T(ω, kn(ω))‖ dµ(ω)

≤ ϕ

∫
Ω

‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)

+ a
∫
Ω

‖S(ω, x∗(ω))− S(ω, kn(ω))‖ dµ(ω)

= a
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω)

≤ a

(1− βn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + βn

∫
Ω

‖T(ω, zn(ω))− x∗(ω)‖ dµ(ω)


≤ a(1− βn)

∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + a2βn

∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

= a(1− βn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) + a2βn

 (1− γn)
∫
Ω
‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω)

+γn
∫
Ω
‖T(ω, yn(ω))− x∗(ω)‖ dµ(ω)


≤ (a(1− βn) + a2βn)

∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω). (4.3)

Applying (4.3) in (4.2), we have

∫
Ω

‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω) ≤

 [1− αn(1− a)− aαnβn(1− a)]
∫
Ω
‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω)

+
∫
Ω
‖εn‖ dµ(ω)

 .

(4.4)

Using the assumptions that limn→∞
∫
Ω
‖εn‖ dµ(ω) = 0, 0 ≤ 1− αn(1− a) = δ < 1, limn→∞ βn = 0 and

∞
∑

n=1
αnβnγn =

∞. Clearly, all conditions of Lemma 2.1 are satisfied. Hence, we have

lim
n→∞

∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) = 0. (4.5)

Conversely. If x∗(ω) is Bochner integrable with respect to the sequence {S(ω, yn(ω))}∞
n=0, we get∫

Ω

‖εn‖ dµ(ω) =
∫
Ω

‖S(ω, yn+1(ω))− (1− αn)S(ω, yn(ω))− αnT(ω, kn(ω))‖ dµ(ω)

≤
∫
Ω

‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω) + (1− αn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω)

+αn

∫
Ω

‖T(ω, yn(ω))− x∗(ω)‖ dµ(ω). (4.6)
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Using (2.14) and (4.3) we have∫
Ω

‖T(ω, yn(ω))− x∗(ω)‖ dµ(ω) =
∫
Ω

‖T(ω, x∗(ω))− T(ω, yn(ω))‖ dµ(ω)

≤ ϕ

∫
Ω

‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)


+a

∫
Ω

‖S(ω, x∗(ω))− S(ω, kn(ω))‖ dµ(ω)

= a
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω)

≤ (a(1− βn) + a2βn)
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω). (4.7)

Using (4.7) in (4.6), we can write

∫
Ω

‖εn‖ dµ(ω) ≤


∫
Ω
‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω)

+[1− αn(1− a)− aαnβn(1− a)]
∫
Ω
‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω).

 (4.8)

Hence, we get

lim
n→∞

∫
Ω

‖εn‖ dµ(ω) = 0.

This leads to the Jungck-Noor type random iterative scheme {S(ω, xn(ω))}∞
n=0 is (S, T)−stable almost surely.

The proof is completed. �

Theorem 4.2. Let (X, ‖.‖) be a separable Banach space and T, S : Ω × C → C be two random operators satisfying

(2.14) with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T).

Let {S(ω, xn(ω))}∞
n=0 be a Jungck-SP type random iterative scheme defined by (2.8) converging strongly to x∗(ω) al-

most surely, where {αn}, {βn} and {γn} are real sequences in (0, 1) such that
∞
∑

n=1
αn = ∞ and 0 < α ≤ αn. Then

{S(ω, xn(ω))}∞
n=0 is (S, T)−stable almost surely.

Proof. Consider that {S(ω, yn(ω))}∞
n=0 be any sequence of random variable in C and

‖εn‖ = ‖S(ω, yn+1(ω))− (1− αn)S(ω, kn(ω))− αnT(ω, kn(ω))‖ , (4.9)

where S(ω, kn(ω)) = (1− βn)S(ω, zn(ω))+ βnT(ω, zn(ω)) and S(ω, zn(ω)) = (1−γn)S(ω, yn(ω))−γnT(ω, yn(ω))

and limn→∞
∫
Ω
‖εn‖ dµ(ω) = 0 for every ω ∈ Ω. Now we prove that x∗(ω) is Bochner integrable with respect to
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the sequence {S(ω, yn(ω))}∞
n=0. It follows from (4.9) that∫

Ω

‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω)

≤
∫
Ω

‖S(ω, yn+1(ω))− (1− αn)S(ω, kn(ω))− αnT(ω, kn(ω))‖ dµ(ω)

+(1− αn)
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω) + αn

∫
Ω

‖T(ω, kn(ω))− x∗(ω)‖ dµ(ω)

=
∫
Ω

‖εn‖ dµ(ω) + (1− αn)
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω)

+αn

∫
Ω

‖T(ω, x∗(ω))− T(ω, kn(ω))‖ dµ(ω). (4.10)

By (2.14), we obtain∫
Ω

‖T(ω, x∗(ω))− T(ω, kn(ω))‖ dµ(ω)

≤ ϕ

∫
Ω

‖S(ω, x∗(ω))− T(ω, x∗(ω))‖ dµ(ω)

+ a
∫
Ω

‖S(ω, x∗(ω))− S(ω, kn(ω))‖ dµ(ω)

= a
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω). (4.11)

Applying (4.11) in (4.10), we have∫
Ω

‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω)

≤
∫
Ω

‖εn‖ dµ(ω) + [1− αn(1− a)]
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω)

=
∫
Ω

‖εn‖ dµ(ω) + [1− αn(1− a)]

 (1− βn)
∫
Ω
‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

βn
∫
Ω
‖T(ω, zn(ω))− x∗(ω)‖ dµ(ω)


≤

∫
Ω

‖εn‖ dµ(ω) + [1− αn(1− a)][1− βn(1− a)]
∫
Ω

‖S(ω, zn(ω))− x∗(ω)‖ dµ(ω)

≤
∫
Ω

‖εn‖ dµ(ω) + [1− αn(1− a)][1− βn(1− a)][1− γn(1− a)]
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω). (4.12)

Using 0 < α ≤ αn and a ∈ [0, 1), we have 0 ≤ [1 − αn(1 − a)][1 − βn(1 − a)][1 − γn(1 − a)] = δ < 1,

limn→∞
∫
Ω
‖εn‖ dµ(ω) = limn→∞ εn = 0. Clearly, all the conditions of Lemma 2.1 are satisfied. Hence, we have

lim
n→∞

∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω) = 0. (4.13)
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Conversely. If x∗(ω) is Bochner integrable with respect to the sequence {S(ω, yn(ω))}∞
n=0, we get∫

Ω

‖εn‖ dµ(ω) =
∫
Ω

‖S(ω, yn+1(ω))− (1− αn)S(ω, kn(ω))− αnT(ω, kn(ω))‖ dµ(ω)

≤
∫
Ω

‖S(ω, yn+1(ω))− x∗(ω)‖ dµ(ω) + (1− αn)
∫
Ω

‖S(ω, kn(ω))− x∗(ω)‖ dµ(ω)

+αnΩ ‖T(ω, kn(ω))− x∗(ω)‖ dµ(ω). (4.14)

Using the same calculations above, it follows from (4.11) and (4.12) in (4.14), one can write∫
Ω

‖εn‖ dµ(ω) ≤ [1− αn(1− a)][1− βn(1− a)][1− γn(1− a)]
∫
Ω

‖S(ω, yn(ω))− x∗(ω)‖ dµ(ω).

Using (4.12), we have

∫
Ω

‖εn‖ dµ(ω) ≤ e
−(1−a)

∞
∑

k=0
αk
∫
Ω

‖S(ω, y◦(ω))− x∗(ω)‖ dµ(ω)→ 0 as n→ ∞. (4.15)

Hence, we get

lim
n→∞

∫
Ω

‖εn‖ dµ(ω) = 0.

This leads to the Jungck-SP type random iterative scheme {S(ω, xn(ω))}∞
n=0 is (S, T)−stable almost surely.

The proof is completed. �

By the same manner as in Theorem 4.1, we can present the following theorems.

Theorem 4.3. Let (X, ‖.‖) be a separable Banach space and T, S : Ω × C → C be two random operators satisfying

(2.14) with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T).

Let {S(ω, xn(ω))}∞
n=0 be a Jungck-Ishikawa type random iterative scheme defined by (2.9) converging strongly to x∗(ω)

almost surely, where {αn} and {βn} are real sequences in (0, 1) such that limn→∞ βn = 0 and
∞
∑

n=1
αnβn = ∞. Then

{S(ω, xn(ω))}∞
n=0 is (S, T)−stable almost surely.

Theorem 4.4. Let (X, ‖.‖) be a separable Banach space and T, S : Ω× C → C be two random operators satisfying (2.14)

with T(ω, X) ⊆ S(ω, X) and F(T) ∩ S(T) 6= ∅. Assume that x∗(ω) be a common random fixed point of (S, T). Let

{S(ω, xn(ω))}∞
n=0 be a Jungck-Mann type random iterative scheme defined by (2.10) converging strongly to x∗(ω) almost

surely, where {αn} is real sequences in (0, 1) such that
∞
∑

n=1
αn = ∞. Then {S(ω, xn(ω))}∞

n=0 is (S, T)−stable almost

surely.

Remark 4.1. If we put S = I (where I is the identity mapping) in (2.7) we get the results of Okeke and Eke [2] and

in (2.9), (2.10) we obtain the results of Zhang et al. [1].
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to improve the content of the manuscript.
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